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We study a reptation model of polymer electrophoresis in which the diffusion of stored length is very
fast compared to the end point model. For long chains we find that the polymer becomes stretched. We
demonstrate that the drift velocity in one dimension is higher by a factor 10/3 than would have been ex-
pected on the basis of simple estimates. This is caused by the fact that a polymer segment, once created,
has a probability of staying that depends on its orientation. The scaling parameter determining the long
chain behavior is Ne?, where N is proportional to the length of the polymer and € is the (dimensionless)
electric field strength. When Ne?2 8 the drift velocity becomes independent on the length of the poly-
mer. For low fields we demonstrate that there is a crossover from a regime where the field can essential-
ly be neglected to a regime where the field significantly changes the dynamics of the polymer. The scal-
ing parameter determining this crossover is shown to be N3€2.

PACS number(s): 36.20.Ey, 82.45.+z, 05.40.+j
I. INTRODUCTION

Reptation as a model for polymer motion is well estab-
lished [1,2]. It shows up for instance in gel electro-
phoresis for which we consider a model closely similar to
the model introduced by Rubinstein [3] and modified by
Duke [4]. The polymer is modeled as a chain of N parti-
cles that we will call reptons. These reptons move ac-
cording to certain rules. The reptons are allowed to
move on a d dimensional cubic lattice. We simulate only
the one dimensional projection along the electric field
since the dimension only modifies some numerical con-
stants, but, as long as the reptons are noninteracting, no
qualitative features. There are two different sorts of
moves that we call internal moves and external moves, as
illustrated in Fig. 1. The internal moves effect the
diffusion of stored length (reptation) as introduced by de
Gennes [1]. The external moves change the shape of the
polymer, and these are the only moves to change the
shape. The rates of the moves are dependent on the elec-
tric field, moves with the field having rates W, ,exp(e/2),
where i and e denote internal, and external, respectively.
Moves against the field are less likely to occur, and have
rates W, ,exp(—e€/2). In these expressions, € is the field
in dimensionless units, i.e.,

— 9Ea
€ KT (1)

where g is the charge, a is the lattice spacing, E is the
magnitude of the applied field, T is the temperature, and
kg is the Boltzmann constant. Perhaps the clearest
definition of the model is given in Fig. 1; for a discussion
of the physical approximations made, we refer to the
literature [1,2]. In defining the rates we have implicitly
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FIG. 1. The model of Rubinstein [3] as modified by Duke [4].
The circles denote subunits of the polymer, called reptons. The
lines represent the segments of the polymer, which determine
the shape of the polymer. The possible moves of the reptons are
indicated by arrows. Internal moves can take place only in
those cells in which there is more than one repton, or
equivalently, when there are extra reptons (extrons) in a cell.
The end points (solid circles) can make the moves indicated by
the dashed arrows. The upper end point can only move back
and shorten the chain as there is no extron in this cell. The
lower end point has one extron, and the only external moves it
can make is to grow. The reptons are noninteracting and all the
possible moves are indicated. In the extron equilibrium model,
the chain is fully characterized by the total number of reptons N
(in this figure N =11), the length of the chain L (here L =6),
and the shape of the polymer. As the shape in the direction per-
pendicular to the field E is not important, the shape is fully
specified by the signs s; of the individual segments, where +1
denotes up, and —1 denotes down. In ‘this picture
s;={1,1,—1,1,1,1}, where the index starts at the bottom seg-
ment. The number of extrons is M =N —L —1=4. While this
picture is for d =2, we consider only the one dimensional pro-
jection along the field direction as the dimension only changes
numerical prefactors.
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assumed that € <1 as for large fields effects such as hernia
formation [5] takes place that are not taken into account
in the model.

We distinguish between the moves by the end reptons
(the external moves) and moves by the internal reptons.
Internal moves can take place only when there is more
than one repton in a given cell. We call these excess rep-
tons extrons. Internal moves can be done only by ext-
rons, and extrons can only make internal moves. Extrons
are bosons since there is only one way to put n extrons in
a given cell. In previous studies the internal reptons were
taken to move with the same rates as the end points.
This was done by computer simulations [6,7], and analyt-
ical approaches [8,9], usually for fairly low fields. Ques-
tions that were addressed were finite size corrections and
possible scaling behavior [7,8].

In this paper we study the limit in which W;/W,— «,
so the end points are moving slowly compared to the
internal reptons. The motivation for this is twofold:
First, it is of relevance for those polymers that have spe-
cial end groups, which can be heavy or large compared to
the rest of the polymer. Second, it is a different model
that has certain significant advantages for theoretical
study as the importance of the end point motion is illus-
trated in its purest form. In this sense the results of this
paper are complimentary to the results of Kooiman and
van Leeuwen [9], who studied chains thus completely el-
iminating end point motion.

Models in which the stored length diffuses infinitely
rapidly have been studied before [10,11]. However, the
model introduced in this paper differs in one very impor-
tant respect: fluctuations in the length of the polymer are
taken into account. This first of all decouples the motion
of the two ends of the polymer so that the dynamics are
simpler and more physical. A second and more impor-
tant consequence of this difference is that due to the fluc-
tuations in the number of extrons, the drift velocity in-
creases substantially, as shown below.

This paper is organized as follows. In Sec. II, the mod-
el is introduced. Next the behavior of long polymers is
studied, where long means that the scaling parameter
Ne*>>1. In Sec. III, we calculate the drift velocity and
in Sec. IV we present an approximate calculation of the
average shape. Next, in Sec. V, we consider the crossover
from the zero field behavior to the field dominated
behavior. We demonstrate that another scaling variable,
N3€? determines this crossover. Some further aspects are
pointed out in Sec. VI.

II. FAST EXTRON MODEL

In the limit W,/W,— o the extrons have time to
equilibrate so we call this model the fast extron model
(FEM). These transition rates are as follows. In order
for the polymer to grow at the beginning of the chain,
there must be at least one extron in this cell. We denote
the number of extrons in cell number zero by n,. There
will be a certain probability p(ny>0) that there is at
least one extron in the first cell. So for the growth rate
for each of the 2d possible directions, we find (W =W, )
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W, =We*’p(n,>0)=We*</2(1-6,) , )

where the signs in the exponent depend on whether the
chain grows up (+) or down (—), and 6,=p(n,=0) is
the probability that there is no extron in the first cell. In
order for the chain to shrink, no extron must be present
in cell 0, so that

W, =We*<2g, , (3)

where the sign in the exponent is determined by the first
chain segment. The problem is now to establish the prob-
ability of finding no extrons at the end of the chain. As
we consider the limit in which the extrons move infinitely
fast, they have equilibrated and we can use equilibrium
statistical mechanics to find this probability. 6, is then
given by the ratio of two partition sums,

.= Qllll,[si}
0 Oum, s, ’

where Q is the partition sum for M noninteracting bosons
in a potential V;, and Q' is the similar partition function
in which there is no extron in the first cell. We describe
the polymer shape by the segments s;, which can be *1
depending on whether the segment is pointing up (+1) or
down (—1) (see Fig. 1). Then the potential V; is given by

4)

L
Vi=e 3 55 (5)
j=i+1
The potential is defined to be relative to the last cell i.e.,
V;=0. It is well known that the calculation of these
canonical partition functions for bosons is complicated.
We, therefore, use a grand canonical approach, in which
the number of reptons is fluctuating, and only the average
number of extrons is specified. In the grand canonical en-
semble a chemical potential u is introduced, which fol-
lows as the solution to
L 1

M=N-—-L—-1= . 6
El exp(—u+V;)—1 ©

There is no temperature prefactor in the exponent as this
is already absorbed in the definitions of y and V;. In a
simulation, Eq. (6) must be solved numerically. When we
know the chemical potential, the transition rates aver-
aged over the ensemble of extrons can easily be calculat-
ed. The probability that there is no extron at cell number
zero is in the grand canonical ensemble

go=1—e"""0 (7)
and the probability that there is no extron in the last
chain cell is

0,=1—ek . ®)

While these expressions appear to be asymmetric under
the inversion of the polymer

oL ©
* —
Si T TSL—i+1>
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they in fact do satisfy the symmetry as after transforma-
tion u*=u—"V,,and V§=—V,.

It is possible to improve somewhat on the approxima-
tion made by using ‘‘almost canonical” transitions rates,
and thereby suppress some of the fluctuations in the total
number of reptons. From equilibrium statistical mechan-
ics, we know the relation between the free energy 4 and
the grand potential )

A=Q+uM . (10)

As Q =exp(— A4), this can be transformed into an ap-
proximate way to obtain the ratio of canonical partition
sums, Eq. (4). Explicitly,

6p=exp[Q—Q' +(u—p')M], (11)

with

L _
Q=73 log(1—e" 7). (12)

i=1

Similarly in the primed expressions the term i =0 is omit-
ted. In a simulation, now three chemical potentials have
to be calculated, u and two u’s corresponding to both end
cells. We found that for small € there is hardly any
difference between the probabilities calculated using the
grand canonical ensemble, and the ‘“almost canonical”
transition rates. For large € significant differences ap-
pear; for instance, configurations with very short chains
occur much more frequently in the grand canonical simu-
lation, which we believe to be an artifact of the use of the
grand canonical ensemble. All the simulation results
quoted are for “almost canonical” transition rates.

III. LONG CHAINS

In this and the next sections we consider the long chain
limit. The crossover to short chains will be discussed in
Sec. V. For long chains, a considerable simplification
occurs: the motion of the polymer is such that there is a
well defined head and a well defined tail, where the head
is part of the polymer that is predominantly growing, and
the tail is predominantly shrinking.

In the following, let s be the expectation value of s; in
the middle of the chain, which conventionally is taken to
be positive. If we pick an arbitrary chain segment some-
where in the middle of the chain, (i.e., not close to the
head or the tail) the probability that it will be up is
(1+s5)/2 and the probability that it will be a down seg-
ment is (1—s)/2. We use this in the following.

We first consider the expectation value of finding one
extron at the end cells. As there are well defined heads
and tails, this probability can be found by equating the
growing rate of the head and the shrinking rate of the
tail. At the head, the possible moves do not depend on
each other, so we need to add up the rates. Denote the
average orientation of the head segment by s; . Then
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Riua =Wd(e?+e¢2)(1—6;)
1—s; _ . 1+s
—W ee/Z 5 +e e/2____2_ eL
N
=Wcosh§ 2d — 2d+1—7Ltanh§ o, | . (13)

We have used the convention that the head is at cell L,
and the tail at cell 0. For the tail, all the segments have
to be eliminated one after another and for the shrinking
rate we need to add up the waiting times. As the polymer
is long, ¥V, is large and hence 6,~=1. If the tail is short,
the value for s in the middle is also valid in determining
the probabilities with which up and down segments ar-
rive at the end. We then find

-1

I

Rtail W {e—E/Z l+s +e€/2 1—s

2 2
-1 -1
€ €
cos > ‘1 s tanh > (14)

In the stationary state Ry.,q =R,,; and this produces an
expression for the probability 6; in terms of s and s,

-1
-1
}. s

A more rigorous derivation, arriving at the same result,
can be made by using the master equation and using a
factorization assumption about correlations between sub-
sequent segments [12]. For small fields, we do not need
to know s as this would produce a higher order correc-
tion, and we find

Ricaa=WI[2d—(2d +1)8, ]+ 0(€?) , (16)

0,= |2d +1—sL:anh§

X {2d— | |1—s tanh% cosh2§

irrespective of the value of s, , and
R, =W+0(e), (17

so that for low fields in the stationary state
6, =(2d —1)/(2d +1). One first conclusion is that this
probability does not depend on N, and is also nonvanish-
ing. We note that for short chains and small fields
R,..q=0 and 6; =2d /(2d +1). The average chemical
potential of the long polymer we find, using Eq. (7), to be

—log—2—
Ho= 8 g ¥1)

where the subscript zero reminds us that this is an aver-
age value over polymer shapes.

One of the most important quantities determining the
shape of the polymer, as well as its drift velocity, is the
average orientation of an internal segment s. This seg-
ment must have been formed at the head and its expecta-
tion value is given by

(18)
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€2, + _ ,—€/2, —
e’’ps —e Ps

S=
€/2, + —€/2,,—
e“’“p; +e Ds

(19)

where p is the probability that an up (+) or down (—)
segment survives to make it to the interior.

A simple estimate for s is used in the biased reptation
model [13]. There it is assumed that a segment, once
formed, stays forever, so that p;"=1. Extending this line
of thought to the fast extron model results in

€

sBRM)=¢(anh 5 (20)

This argument does not give the average orientation ob-
served in simulations. What is ignored is that chain seg-
ments, once formed, can again be wiped out by a subse-
quent shrinking of the head. As for low fields
6, =(2d —1)/(2d +1), this has a nonvanishing probabil-
ity and must be taken into account. For the Rubinstein-
Duke model, this was first pointed out by Duke,
Semonov, and Viovy [14].

In the FEM, the staying probability can be fairly accu-
rately calculated with the following argument that can be
called “one cell deep.” Let us assume that the most re-
cently grown segment at the head was up. The probabili-
ty ¢ that this segment will be wiped out on the next
move of the head segment of the polymer is the rate with
which the polymer shrinks divided by the total rate of
changing the end repton
92: e Fer2

q:t

= , 21
Oie T 2+d(1—6F ) e *+e /%)

where 6] =0, (s; =1)1—e*", with u*=u(s; =1) the
chemical potential with the last chain segment up. When
the last segment happens to be down, we have a similar
g~ with chemical potential x~. The probabilities for the
segments surviving one move are 1—g* and 1—q ! for
up and down segments, respectively. These probabilities
are of the order of 4d /(6d —1) for low fields. Since this
probability is high, we now assume that if the segment
survive one move, they will stick forever

pi=1—q%*. (22)

This does not give s directly as it requires u(s, ==x1).
For low fields, the chemical potential u* will be close to
1°. The thermodynamic potential in all the cells except
for the last cell (i.e., u— ¥;) will be influenced only slight-
ly O(€?) by the orientation of the last segment, as for low
fields the extrons can be on many sites. However, by
definition the chemical potential is defined relative to the
last cell. So the chemical potential will depend on the
orientation of the last cell, and u® ~uS, where uf, is the
average chemical potential, Eq. (18). This is substantiat-
ed below, Eq. (46). With these u*, we obtain

__6d
6d —1

For low fields, we can improve on the approximation im-
plied in Eq. (22). For low fields we can assume that the

s € (ex1). (23)
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g* do not depend on the specific path taken. We can
then calculate the probability that the newly formed seg-
ment will not only survive its first subsequent jump, but
all subsequent jumps. This is found to be [15]

_ +
pi= —q—ll _Zqi : (24)

This yields a different estimate for the s, which should be
more accurate than Eq. (23) for low fields. Using again
that for low fields u* ~pu%+e, we obtain

_1+4d
1+2d

As is demonstrated in Fig. 2, this produces a good agree-
ment with the simulation results for the low field value of
s. The argument cannot be extended to higher fields as
then the assumption that q is independent of the last few
segments can no longer be justified.

The average drift velocity can now easily be calculated
as

€ (ex1). (25)

v=s{u,la, (26)

where (uc) is the average curvilinear velocity, or the
average rate with which the extrons are transported
along the chain. This curvilinear velocity clearly is equal
to the rate at which extrons are put into the polymer at
the end, so {u, ) =R,,; and hence

sWa

v= 27)

€ €
h— |1—stanh—
cosh” s tanh—

The only nontrivial quantity here is s. For low fields, we
find

= 1t4d
1+2d

Extending the ideas of the biased reptation model [cf. Eq.
(20)] would have resulted in v =eWa /2. Our result is

Wa . (28)
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FIG. 2. The average value of s in the interior of the polymer.
This number determines the average end point distance along
the field S as S ~Ns. The circles are simulation results, the solid
line is the analytic prediction Eq. (19) using the chemical poten-
tials from Eq. (60), the dotted line is the low field result Eq. (25),
and the dashed line is the high € result Eq. (31).
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larger by a factor 10/3 in one dimension.

For large fields €X 1; on the other hand the chemical
potential u* and u~ differ. When the last chain segment
is up, many extrons move to this newly formed cell, and
hence the chemical potential changes substantially

ute=ul. (29)

But, with the last segment down, only a few extrons move
to this cell and the chemical potential changes little
u =pl—e. (30)
This results in
2

s=1=—"— (21 (31

and
v = Wa sinhe . (32)

Equation (31) is compared to simulation results in Fig. 2.
In Fig. 3, the drift velocity of the long polymer is present-
ed as a function of the electric field. A remarkable and
for us unexpected result is that v /€ has an initial decrease
with €. For low fields, simulation results for the drift ve-
locity seem to converge to the low field value implied by
Eq. (28).

IV. SHAPE OF LONG POLYMERS

We first estimate the average number of extrons in the
chain. As extrons are bosons, we have

B 1
M= s — V=1

=~ fwdx 1
0 exp(—pu+sxe)—1

=—Liog(1—en, (33)
s€

where we have replaced the sum by an integral, and we
have assumed that deviations of V, from its average
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FIG. 3. The drift velocity divided by the applied field. The
circles are simulation results, the solid line is the analytic pre-
diction Eq. (32), and the dotted line is the low field prediction
Eq. (28).
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value sxe are small. Using Eq. (18 and
s=(4d +1)e/(2d +1) for low fields [Eq. (25)], we obtain
for the average number of extrons

(M)~ (2d+1)

~ 34
(4d +1)€? 34

2d +1
2d—1 |~

This expression can only be expected to be reasonable
when the number of extrons is large, or equivalently, the
applied field is low. The most important conclusion is
that M is independent of N. As L =N —M — 1, the chain
is completely stretched except for an € dependent num-
ber. This conclusion agrees with simulation results. The
convergence of any property of the polymer with N is
quite slow, if we consider, for example, the not-very-small
field €=0.1, then M ~66 in one dimension. This must be
a small fraction of the total number of reptons, so the
long chain limit applies only for N 2 2000 for €=0.1. In
Fig. 4, simulation results for the number of extrons are
presented. The simulations are compatible with the €2
dependence of the number of extrons, but the numerical
prefactor is found to be about 2.1 times larger for the al-
most canonical transition rates, and the prefactor is

. about five times larger for the grand canonical transition

rates. A better estimate for the number of extrons is
presented below, Eq. (47).

Next we consider the average shape of the polymer, for
which we present a typical simulation result in Fig. 5.
For the tail, we have found a successful argument
describing the results. In simulations we found that only
the single last segment of the tail has a different orienta-
tion than the middle of the chain. An analytic argument
that gives satisfactory results is to take the average of the
possibilities that the segment is up or down, weighed by

10°E

™

10°

T T 77T
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T 1 llll"l
+
11 Illllll

FIG. 4. The average number of extrons in a long polymer as
a function of the applied field €. We found that this number is
independent of the total number of reptons N, as long as
Ne?*>>8. The circles are simulation results for the “almost
canonical” transition rates, the pulses are simulation results for
the grand canonical transition rates, and the solid line is the an-
alytic prediction Eq. (34). The dashed line is the number of ext-
rons following from the polymer shape as calculated in Sec. IV,
Eq. (47). The number of extrons is the only quantity that de-
pends on the specific simulation technique. Other results
differed by less than 1%.
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FIG. 5. The average shapes of the head (a) and the tail (b) for
€=0.1 and N =2000. For these parameters s =0.15. The simu-
lation results are dots in (a), and pulses in (b). The solid line is
an exponential in (a), and a guide to the eye in (b). While for the
tail only the last segment is different from the middle part of the
chain, the head shape can be accurately represented by an ex-
ponential. The dashed line in (a) is the first order analytic pre-
diction Eq. (48), whereas the dot-dashed curve is the converged
solution of the set of equations described in Sec. IV. The black
dot in (b) is the prediction of Eq. (35) using the simulation value
for s.

the waiting times when it is up or down. This results in

(s,)= s —tanh(e/2)
! 1—s tanh(e/2) ~

This expression we found to be accurate, see Fig. 5(b). It
is consistent with Eq. (14) in that an alternative derivative
of the shrink rate consists of adding properly weighed
shrink rates, which would yield Eq. (14). The derivation
of Eq. (35) can be made more precise by using the master
equation [12].

For the shape of the head, the analogous argument is
more complicated. We assume that the shape can be un-
derstood by a similar time argument, i.e., if certain seg-
ment n happens to be up, there will be slightly higher
than average number of extrons in the last cell, causing
the chain to grow slightly more rapidly than average.
Conversely if this particular segment happens to be
down, the polymer will grow somewhat slower. The re-
sult is that the probability of finding the nth segment
down is enhanced compared to its value in the middle.
Explicitly

(35)

(1+)T,  —(1—)T,
(14+s)T," +(1—5)T,”

(s,)= ) (36)

where we are interested in n close to L, i.e., L —n is
small. As we are interested mainly in the small field lim-
it, this can be simplified to

T —1T,

n

<S )=S+w—_
" Tr+T,

> (37
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where T is the average time that it takes for the poly-
mer to grow a new segment or wipe out one segment
when the nth segment happens to be up (+1) or down
(—1). Taking the average over all the segments except
for the nth and using Eq. (13), we find the growth rate

T =R peaa(s, =%£1)
=iW{(2d+1)exp[y(s,,=il)]—1}—1 (38)

for n <L. As is evident from Eq. (13), n =L is special
and we obtain
-1

TE (2d +1)exp y(sL=i1>¢§(1—eL> -1

=1
w

(39)

We next assume that dependence of the chemical poten-
tial on the orientation of the nth segment is given by a
linear combination

L
p=to+ 3 pals,— (5,0, (40)
n=1
where u, <€, and moreover, u, is small when n is not
close to L. As uy=log[2/(2d +1)], and u,, is small

(s,)=s—2u, (41)
and

2d —1
4d +2 °

To find p,, we assume that the number of extrons is in-
dependent of the orientation of the last few segments. In
reality, the number of extrons will fluctuate, and u, is
hard to determine. To assume that the number of ext-
rons is a constant is a physical assumption, which has to
be checked a posteriorii Using Eq. (6), putting
dM /ds, =0, and assuming that fluctuations in the poten-
tials are small, we obtain

(sp)=s—2u; +e (42)

p,=e——L | 43)

n exp(—uo+¥;)

== = ; (44)
" igo [exp(—po+¥;)—1]
where V; is the average potential at cell i,
_ L
Vi=e3 (s;) . (45)
j=i

Note that we have
K =€, (46)

which we have used in Sec. IIl. Given the (s, ), we can

find an estimate for the number of extrons, which is more
accurate than Eq. (34),
L 1

M=3 — . 47)

i=0 exp(—po+¥;)—1
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We have a closed set of equations for (s, ) and u, that
can be solved, for instance, by iteration. The solution is
presented in Fig. 5. In the first iteration, we can put
(s, ) =s in the calculation of ¥, to obtain
_ 1
,uL_n—e————-—————zenss_l . (48)
This expression is also presented in Fig. 5. There is a
semiquantitative agreement between this expression and
the simulation results. Equation (25) gives a value for the
penetration depth

T se 4d+1 2

(49)

Simulation results suggest an € 3’2 dependence for H as
is demonstrated in Fig. 6.

V. CROSSOVER TO THE VERY LOW FIELD
BEHAVIOR

We have firmly established the picture that there is a
well defined head and a well defined tail for long chains.
This assumption is expected to break down when the
number of extrons that follows from Eq. (34) becomes
comparable to the number of extrons present in a poly-
mer in zero field, M =N /(2d +1). In one dimension this
happens when Ne?><8. While something will happen for
Ne*~1, we found that there is a crossover to low fields
taking place at much smaller fields. For zero fields
0p=2d/(2d +1), and in simulations we found that
corrections are of the order of eV N. In this section, we
will only consider field so small that 6,~2d /(2d +1).

We focus on the renewal time ¢,, the time which is
needed for all the segments of the polymer to be renewed.
To this end we consider the related quantity, the curvilin-
ear velocity correlation function,

D(1)={p (0)u.(1)) . (50)

Here u, is defined as the center-of-mass velocity along
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FIG. 6. The penetration depth H as a function of the applied
field. The circles are simulation results and the solid curve is
the analytic prediction H =3/5€%, Eq. (49). The dashed line is
the curve H =14.5(10€)7 3’2, and is a fit to the simulation re-
sults.
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the segment index. Equivalently, it is half the number of
segments grown per unit time on one end minus half the
number of segments grown per unit time on the other
end. The curvilinear velocity is a fluctuating quantity,
i.e., it is either zero or very large for a very short time.
This is to be contrasted with the grow and shrink rates of
Sec. III, where we were interested in the average value of
the curvilinear velocity. We are interested in average
properties, which are defined as time averages, or
equivalently, stationary state averages. The velocity
correlation function has two physically different contri-
butions, a 6-function contribution due to the hopping of
the end points, and a slowly decaying contribution that is
due to the applied field. The &-function contribution is
due to uncorrelated subsequent jumps of the end reptons.
The rate with which the two end reptons jump is
2W([2d —(2d —1)6,]=8dW /(2d +1) as 6y,=2d/(2d
+1).

The physical origin of the slowly decaying contribution
can be understood by noting that the end-to-end vector
along the field changes only on the renewal time scale.
At a given time, the average curvilinear velocity is pro-
portional to half of the growth rate at one end minus half
the growth rate at the other end. As we are considering
small fields we can linearize the dependence on ¥V in Eqgs.
(7) and (13). For the average curvilinear velocity, con-
strained by the value of the end-to-end vector S, we find
<uc>S:2d+1W[60—6L]= WeS . (51)

2 2
Therefore, the initial value of the slowly decaying com-
ponent is equal to the average of the square of the curvi-
linear velocity, {u.)%. We thus have

®(1)= Wt —O+)+%W2€2g(t) , (52)

2d +1
where the prefactor to the 8-function contribution is re-
duced by a factor of 4 as we consider the center-of-mass
motion, and by an additional factor of 2 due to the con-
vention 8(¢)=[8(t —0")+8(t —07)]/2. We have also
used that (S?)=L.
The function g(¢) can be calculated fairly accurately.
According to Egs. (51) and (52), we have

L
g=T(5OS1)=1 3 (5,0s5,0) (53

n=1

since in the zero field limit segments are uncorrelated and
any newly formed segment will be uncorrelated with the
earlier formed segments. For a particular segment, n one
has s,(t)=s,(0) as long as it is not eliminated from the
chain by either of the two ends. If it later might reem-
erge, s,(t) is uncorrelated to s, and, therefore, on the
average zero. As the ends of the polymer move randomly
to segment n, the calculation of the survival probability is
a standard problem of random walks. We consider a
slightly different problem and let the segment n» randomly
wander in the chain of fixed length L till it escapes from
the boundaries. The reason for doing so is that the end
points move correlated such as to keep the chain at fixed
length L. When it shrinks, the extron number increases
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and, therefore, the tendency to grow increases and vice
versa. The random walker escaping from a fixed region is
a simpler problem and yields the following solution for
g(1)

2

_ 2 < 7k
g(1) 2k=12,3,.. cotanz(L D
7k dwt
X f— J— —_— .
exp 2‘1 cosL T 124 11
(54)

This expression has a delicate behavior for times of or-
der unity. However, for short times the assumption of
constant length is not valid. The interesting behavior of
this expression is for times of order L2 Then the co-
tangent and cosine in Eq. (54) can be expanded to yield
the rapidly converging series

g(t)=_8_ i 1 _ 2k +1)*m*dwt
7 Sy 2k +1)? (2d +1)L?
=% e Ttle T+ Le BT+ - - ] , (55)

where we used the shorthand r=w2dWt/(2d +1)L>2.
This approximation gives the correct initial value
g (t =0)=1, but fails to give the proper initial slope. The
resulting velocity correlation function is plotted in Fig. 7,
and agrees very well with simulation results for low fields.

Clearly, the polymer renews itself on the time for
which one of the end reptons has an average curvilinear
displacement of L =2dN /(2d +1), or rather a mean
square displacement of L2. In terms of the velocity
correlation function, the renewal time ¢, is the solution of
the equation

tf tr
L2=f0 dtlfo dt,®(|t,—1,])
tr
=2f0 dr(t,—1)®(1) . (56)

As g (1) is rapidly decaying, we can extend the integral to
long times. When we ignore the contribution proportion-
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FIG. 7. The velocity correlation function ®(¢) (solid) for
N =200, €=0.001 compared to the analytic expression Eq. (52).
The wiggles are simulation noise.

JAN A. LEEGWATER AND J. M. J. van LEEUWEN 52

al to t®(t), this results in

p—_2d 1 N?
T 2d+1 W 14+dN3€2/6(2d +1)

A remarkable feature of this result is that there is a cross-
over where the applied field is of relevance for
N3€2~6(2d +1)/d, so the scaling parameter determining
this crossover is N3/%¢. This is to be compared to the
scaling parameter of the previous sections, eN!/2. For
the Rubinstein-Duke model, the scaling parameter that
determines whether the applied field significantly changes
the physics is believed to be Ne [7]. The fast extron mod-
el is apparently even more susceptible to perturbations.
A crossover behavior with scaling parameter N3€? has
been found before for the biased reptation model [16—18].
This crossover is of the same nature as the one found
here as it describes the change of the polymer renewal
time with applied field.

When the applied field is increased, the calculation
given for g(¢) no longer applies. In the calculation we
had assumed that the center-of-mass performs a simple
diffusive motion, whereas we have just shown that for
N3€2~18 the renewal time, and therefore the center-of-
mass motion, is significantly affected by the field. In Fig.
8, we show that 7, <2N 2/3W for larger values of N 3¢2 an
observation we return to in the discussion.

The mobility coefficient in the zero field limit is found
by using Eq. (57) and the relation {AR?)
=a2(S?)=a’L,

(57)
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FIG. 8. (a) The velocity correlation function ®(¢) (solid) for
N =1000, €=0.0005. Apart from the remnant of the § peak at
t =0, we find a slowly decaying contribution. The dashed line is
the exponential Eq. (52) with a decay time W /A =618 53, which
is the decay time 7, /2 given by Eq. (63). In this figure the simu-
lation extended over 2 X 108 steps. (b) ®(¢) (solid) for N = 1000,
€=0.001 compared to the exponential Eq. (52) with a decay rate
A given by Eq. (63), W/A=32553. In (a) N3€*=250, and in (b)
N3€*=1000.
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2
,u=Nq(—AR—>— =alqWw . (58)
2t,

The derivation presented here gives another under-
standing why the scaling is different from Ne?, as might
have been expected on the basis of the results of the pre-
vious sections. While a specific configuration of the poly-
mer has a small curvilinear velocity proportional to Ne?,
it will keep its orientation for a very long time, of the or-
der of N2. There is an important difference of the fast
extron model and the Rubinstein-Duke (RD) model in
that in the FEM the head and tail flip after essentially
one renewal, whereas this will be a much slower process
in the RD model.

VI. DISCUSSION

In Sec. ITI, we have presented results for the average
orientation of the polymer in the low € and high € re-
gimes. To interpolate between these two cases, we use
the sticking probabilities Eq. (22). While for low fields
the chemical potentials u* =g, this no longer holds for
elevated fields as is already demonstrated in Egs. (29) and
(30). For intermediate fields, the chemical potentials lie
in between these cases. The chemical potentials u°, im-
mediately before the last grow, follows from Eq. (7)

ul=log[1—6,]. (59)

The chemical potentials u* can be found by requiring
that these potentials are compatible with the number of
extrons M. This is not an exact calculation, as in reality
M will fluctuate. Keeping the first term in Eq. (33) ex-
plicitly, assuming that M is constant results in

s€
[1—exp(te+put)]

We now have a closed set of equations. The numerical
solution of the set of equations (19), (59), and (60) is
presented in Fig. 2. The approximations made cannot
really be justified for higher fields, in particular the validi-
ty of Eq. (33) is doubtful. Yet, Eq. (31) remains valid for
large fields.

In Sec. V, we have seen that the curvilinear velocity de-
cay rate decreases with N3€2. We can make this quanti-
tative if we assume that for all fields the velocity correla-
tion function is a single exponential. The motivation for
this is that Eq. (55) shows that by far the largest contribu-
tion to g is from the k =0 contribution. So we assume
(we take the one dimensional case from now on)

log(1—e’)=log(1—er")— (60)
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<I>(t)=%W6(t—O+)+%]~W262e—}". (61)
This assumption actually works well for N3¢* up to 1000
as illustrated in Fig. 8. For low fields we have
A=372/4N? [see Eq. (55)]. Clearly it is to be expected
that A is of the order of 1/¢,. For large fields, we found
that good results are obtained if we assume that A=~2/z,.
This leads to the following equation for ¢,:

2.2
1, + Nle—zeat,Z=%N2 : (62)
with a=1+e ~2. The solution of Eq. (62) is
172
4 aN3e?
= el — (63)
aWNe? 3

We find that the renewal time decreases with the applied
field, smoothly crossing over from

__2N? ) 1
t,= IW €< N3 5 (64)
to
4 N 72 1 1
= —— 2 2
L= Ve IE NUE (65)

As is illustrated in Fig. 8, Eq. (63) is quite accurate for
N3€? up to about 1000. This observation suggests that
the crossover behavior described by Eq. (63) correctly de-
scribes the dynamics, and is an argument that the low
field phase and the intermediate phase where the tube
renewal is determined by the field are smoothly connect-
ed to each other. For large values of N3¢?, the curvilin-
ear velocity correlation function is observed to be sys-
tematically larger than the prediction of Eq. (61); the on-
set of this trend is already visible in Fig. 8(b). Renewal
times obeying scaling laws similar to Eq. (63) were found
for the biased reptation model [16,17]. In these articles
also the consequences for the mobility were discussed.
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